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Dynamics of fluxon lattice in two coupled Josephson
junctions
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Russia
‡ School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK

Received 13 July 1998

Abstract. We study theoretically the dynamics of a fluxon lattice (FL) in two coupled
Josephson junctions. We show that when the velocity of the moving FL exceeds certain values
(Va,b), sharp resonances arise in the system which are related to the excitation of the optical and
acoustic collective modes. In the interval (Va, Vb) a reconstruction of the FL occurs. We also
establish that one can excite localized nonlinear distortions (dislocations) which may propagate
through the FL and carry an arbitrary magnetic flux.

In recent years many papers have addressed the dynamics of the fluxon lattice in layered
superconductors and, in particular, in highTc superconductors. In the absence of a magnetic
field, the spectrum of collective oscillations in the long wave limit has a threshold frequency
which coincides with the Josephson frequencyωJ [1–7]. If a magnetic field is applied,
the vortex lattice is formed in a superconductor, and the spectrum of collective modes is
changed. In particular, an acoustic-like mode related to the vortex lattice oscillations arises.
The spectrum of the fluxon lattice (FL) arising in a parallel magnetic field was calculated
in [6–8].

The collective modes may be excited by an external ac field and also by a dc current
(jdc) across the layers. In the latter case, the collective modes are excited if the velocity of
the moving FL coincides with the phase velocity of the collective modes. This effect has
been studied in detail for the case of a long Josephson tunnel junction [9] and was studied
in a theoretical paper [10] recently for the case of layered superconductors.

In this letter we consider two coupled, long Josephson junctions and study the excitations
of small amplitude collective modes as well as the excitations of nonlinear perturbations
(dislocations) of the FL in such a system by a dc current. The comparative simplicity of
equations governing the FL dynamics in this system allows one to analyse effects arising
in this system in detail, and to understand the behaviour of more complicated structures
such as layered superconductors. It will be shown, in particular, that nonlinear excitations
(dislocations) may arise in the system due to the dc current, and that these excitations can
carry an arbitrary magnetic flux (larger or smaller than the magnetic flux quantum80). We
note that the system under consideration was analysed in the absence of a magnetic field in
[11–13].

Let us consider the system shown in figure 1. We assume that different currents may
be passed through junctions 1 and 2, i.e. a current through the middle superconductor can
be driven independently from currents through the outer superconducting electrodes. For
simplicity we assume that the junctions are identical, i.e. they have equal critical currents,
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Figure 1. A schematic diagram of the structure under consideration.

etc. Equations describing the dynamics of the coupled Josephson junctions have been
obtained in a number of works [4–8, 11–13]. The magnitudes of the magnetic field in
junctions 1 and 2 are related to the phase differenceϕ1,2 through the expression

H1, 2 = (1/2)∂x
[
ϕ1, 2+ γ ϕ2, 1

]
. (1)

HereH1, 2 are the dimensionless magnitudes of the magnetic field in junctions 1 and
2. We choose the quantityH0 = 80/2πλ2 as a unit of measurement of the magnetic field
and the London penetration depth as a length unit.80 is the magnetic flux quantum,ϕ1, 2

is the phase difference in junctions 1 and 2 andγ = exp[−2d], where 2d is the thickness
of the middle electrode (in units ofλ). We assume that the characteristic scale of spatial
variations inϕ1, 2 is much greater than unity (i.e. thanλ), and also that the thickness of the
outer superconducting layers is greater thanλ.

The current through the junctions can be expressed through the corresponding
component of (∇ × H ) and can be related to the quasiparticle and Josephson currents.
We obtain

2l2J ∂xH1, 2 =
(
∂2
t t + α∂t

)
ϕ1, 2+ sin

(
ϕ1, 2

)− η1, 2. (2)

Here lJ = (cH0/8πjcλ)1/2 is the dimensionless Josephson penetration length,jc is
the critical Josephson current density,α = h̄/2eρqpjct0 is the damping constant,ρqp
is the junction resistivity due to quasiparticle tunnelling. Time is measured in units
t0 =
√
h̄C/2ejc, whereC is the junction capacitance (per unit area). The constantsη1, 2 are

dimensionless currents (in units ofjc) through junctions 1 and 2. It can easily be shown
that the magnetic flux in the system equals

8 =
∫ L

0
dx∂x

(
ϕ1+ ϕ2

)
. (3)

Substituting forH1, 2 in (2) from (1), we obtain a set of two coupled equations forϕ1, 2

l2J ∂
2
xx

[
ϕ1, 2+ γ ϕ2, 1

] = (∂tt + α∂t)ϕ1, 2+ sin
(
ϕ1, 2

)− η1, 2. (4)

We now introduce the new functionsϕ± = (1/2)(ϕ1 ± ϕ2). Summing and subtracting
equation (4), we obtain the new equation forϕ±

l2±∂
2
xxϕ± =

(
∂tt + α∂t

)
ϕ± + sin

(
ϕ±
)

cos
(
ϕ∓
)− η±. (5)

Here l2± = l2J (1 ± γ ) and η± = (η1 ± η2)/2. Equations (5) describe the dynamics of
two coupled Josephson junctions. We use them for studying the FL. Let us assume that a
magnetic field parallel to the planes of the Josephson junctions is applied and a dense FL
arises in junctions 1 and 2. In the stationary state (and sufficiently high magnetic fields) the
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solution forϕ1, 2 can be easily found from equation (4):ϕ(s)1, 2 = Hx ± (π/2)+ψ(s)

1, 2, where

ψ
(s)

1, 2 ≈ ∓(l−H)−2 cos(Hx). This solution is valid provided

l−1
− � H� 2π. (6)

Then the right-hand side of this condition means that equation (1) is valid, i.e. the
characteristic scale ofϕ1, 2 variation along thex-axis is greater than the London penetration
depth. The left-hand side of this condition means that the FL is dense, and spatial
oscillations ofϕ1, 2 are small. The field in the junctionsH is related to the external field by
H = 2He/(1+ γ ). The expression forϕ(s)1, 2 given above describes two fluxon chains each
of which is shifted by a half-period with respect to each other.

Let us now consider solutions describing the motion of the FL driven by the dc currents
η1, 2 (the currentsη1, 2 may differ from each other). We seek the solution of equation (5) in
the form of a travelling wave, assuming that the junctions are long enough and neglecting
reflected waves

ϕ1, 2 = Hx − V t + ψ1, 2+ θ1, 2+ θ(0)1, 2 (7)

whereψ1, 2 is the rapidly oscillating part ofϕ1, 2 in space with a period of 2π/H. θ1, 2 is the
slowly varying part andθ(0)1, 2 = 0 (for 1) andπ (for 2). A similar representation was used
in [14–16] for finding the shape of the supersolitons (dislocations) in the FL and in [8] for
finding the spectrum of acoustic-like oscillations of the FL. For the rapidly oscillating part
ψ± = (ψ1+ ψ2)/2, we have from equation (5)

ψ+ = −sin(θ−)
|D+|2

{
b+ cos

(
Y + θ+

)+ αV sin
(
Y + θ+

)}
ψ− = cos(θ−)

|D−|2
{−b− sin

(
Y + θ+

)+ αV cos
(
Y + θ+

)} (8)

whereY = Hx−V t andθ± = (θ1±θ2)/2, b± = V 2
±−V 2, D± = b±+ iαV andV± = l±H.

Assuming thatψ± are small (i.e.|ψ±| � 1), and expanding sin(ϕ±) in powers ofψ±, we
obtain from equations (5) and (8) the equations for the slowly varying partθ± in the main
approximation

l2+∂
2
xxθ+ =

(
∂2
t t + α∂t

)
θ+ + αVA− cos

(
2θ−

)+ αVA+ + αV − η+
l2−∂

2
xxθ− =

(
∂2
t tα∂t

)
θ− + B sin

(
2θ−

)− η−. (9)

Here 4A± = |D−|2± |D+|−2 and 4B = b−|D−|−2− b+|D+|−2. Equation (9) describes the
dynamics of the FL. The phaseθ+ is a local displacement of the FL as a whole and the
phaseθ− determines a relative displacement of two fluxon chains.

Consider the stationary case when the currentsη± are absent and the FL is motionless
(V = 0). Linearizing equation (9), we obtain for the spectrum of the collective modes (for
simplicity we neglect the damping)

ω2 = κ2l2+ ω2 = ω2
0 + κ2l2−. (10)

Hereω2
0 = γ /[(1− γ 2)l2JH2] is the threshold frequency for the optical branch. It decreases

with increasingH. The first expression in equation (10) describes the acoustic branch of
the FL oscillations. Similar modes exist in layered superconductors [6–8]. These modes are
independent of each other. In the acoustic (optical) mode the phaseθ+ (θ−) is perturbed.
Consider now excitations of these modes by the moving FL.

Let us assume that a currentη1 = η2 flows through both junctions (thenη+ = n2 = η
andη− = 0). Then the stable solution of equation (9) is: 2θ− = 0 for V < Va, V > Vb
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and 2θ− = π for Va < V < Vb. HereVa, b are the roots of the equationB(V ) = 0. The
solutionθ− = 0 (π ) corresponds to a positive (negative) value ofB. For the case of a small
dampingα (i.e. α � V±) we haveV 2

a, b
∼= V 2

±[1∓ α2/(V 2
+ − V 2

−)].
If the velocity of the moving FL exceeds (Va/H), a reconstruction of the moving FL

occurs (see figure 2). If the velocity of the FL increases further and exceeds (Vb/H), the
initial triangular form of the FL is restored.

0.0 5.0 10.0
0.0

0.2

0.4

0.6

δη

V
Va

b
V

X X X

X X

X X X

X X

a)

b)

X

Figure 2. The deviation of the current from Ohm’s law (δη = η − αV )) due to excitation of
the collective modes versus voltage (we usedα = 0.5). The positions of fluxons (crosses) in
both junctions are shown inset forV > Va , Vb < V (a) andVa < V < Vb (b).

The form of the current–voltage characteristicsη(V ) may be easily found from
equation (9) averaged in space. We obtain

η − αV = 2αV

{ ∣∣D−∣∣−2
V < Va, V > Vb∣∣D+∣∣−2
Va < V < Vb.

(11)

There are two peaks in theη(V ) characteristics, one of them corresponds to the velocity
of the optical mode (at largeκ) and the second corresponds to the velocity of the acoustic
mode. In addition there are two jumps at voltageV = Va andV = Vb corresponding to
the FL reconstruction. If the damping constantα is small, thenVa, b ≈ V±. In figure 2 we
present the form of theη(V ) curve assuming for simplicity thatα does not depend onV .

Let us assume that a bias current flows in the middle superconducting electrode
(η− 6= 0). One can see that the second equation of (9) is similar to an equation
describing a single Josephson junction. This equation describes nonlinear distortions in
the FL. These distortions (dislocations) were analysed in [14] where it was shown that they
arise as kinks in the FL in two, slightly different coupled Josephson junctions. Similar
distortions (supersolitons) may arise in a single long Josephson junction whose parameters
are modulated in space [15]. The characteristic length of dislocationsl−/B depends on
both the magnetic field and the applied voltage (or current). Dislocations are created at
η− > B(V, H) and can propagate through the system in an interval ofη− above and below
B (Fiske steps [9]). If the damping is small, the dislocation has the well known fluxon form
2θ− = 4tg−1 exp(ξ), whereξ = (x − ut)/ ld and ld = l−/

√
B. The velocityu is related

to η− via the well known formula [16], which in the slow velocity limit is reduced to
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u = (π/4)η−ld/α. According to equation (9), a dislocation arising in a moving FL causes
a perturbation of the phaseθ+. Substituting the expression forθ− into (9), we obtain forθ+

∂2
ξξ θ+ + β∂ξ θ+ = −s cosh−2 ξ (12)

whereβ = αuld/[l2+ − u2] and s = 2αVA−l2d/[l
2
+ − u2]. If the FL velocity V lies in the

intervals (0, Va), (Vb, ∞), we obtain from equation (9)η+ = αV (A+ + A−).
From equation (12) we obtain

∂ξ θ+ = −s
∫ ξ

−∞
dξ1 cosh−2 ξ1eβ(ξ1−ξ). (13)

10.0 0.0 10.0 20.0
ξ

0.0
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Figure 3. The spatial dependence of the magnetic field (θ ′+ = ∂ξ θ+) in the dislocation for
different values ofβ: β = 0.2 (1), 0.2 (2), 1.0 (3).

The spatial dependence of the dislocationθ+(ξ) is shown in figure 3 for different values
of β. The expression forθ+(ξ) (13) is valid provided that the characteristic size of the
dislocationβ−1 is less than the junction lengthL. Let us calculate the magnetic flux carried
by a dislocation in a moving FL. Substituting expression (13) into equation (3), we have
for magnetic flux in the system

8 = 2(HL)+ 2
∫

dx∂xθ+. (14)

The first term in equation (14) is the magnetic flux in the system in the absence of a
dislocation. The second term is the magnetic flux8d carried by a dislocation. With the
help of equation (13) we obtain for8d

8d = −8VA−
u(V )

ld . (15)

One can see that the flux8d depends both on the velocity of the dislocation and the
velocity of the FL as a whole, turning to zero atV = 0. Therefore, a dislocation in the FL
is a localized distortion which can move under the action of an external force (difference of
the currentsη−) and carry an arbitrary magnetic flux, the magnitude of which is determined
by currentsη+ andη−.

In summary we have analysed the dynamics of a dense FL in a system of two coupled
Josephson junctions. Acoustic and optical collective modes may propagate in the FL. If the
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FL is moving in the presence of a dc current, a resonance excitation of the modes takes
place when the FL velocity coincides with the limiting velocityV− of the optical mode, or
with the velocity of the acoustic modeV+. In the interval (V−, V+) the FL is reconstructed.
It was also shown that if the currentsη1 andη2 through the junctions are different, localized
distortions (dislocations) may be created in the FL. They carry an arbitrary magnetic flux
and may lead to a non-Josephson generation.
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